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Abstract 

The largest likely R factor (that for a structure uncor- 
related with the correct structure) is smaller for an 
X-ray fiber diffraction analysis than for a traditional 
single-crystal analysis. For example, the largest likely 
R factor for tobacco mosaic virus determined by fiber 
diffraction at 3 A resolution is 0.31, compared to 0.59 
for a single-crystal analysis. Earlier treatments of 
largest likely R factors in fiber diffraction for a fixed 
number of overlapping Fourier-Bessel structure fac- 
tors are extended to general fiber diffraction patterns. 
The theory is illustrated with applications to par- 
ticular structures thereby elucidating some general 
features of fiber diffraction R factors. These results 
are useful for interpreting the reliability of structure 
determinations, and may also be useful for further 
developments of fiber diffraction theory in general. 

I. Introduction 

The R factor is a useful measure of the quality of 
structures determined by both traditional crystal- 
lography and fiber diffraction. The significance of the 
R factor obtained for a particular structure can be 
assessed by comparing it with the largest likely R 
factor; that for a structure uncorrelated with the cor- 
rect structure. The largest likely R factor for single 
crystals was determined by Wilson (1950) and has 
recently been examined for fiber diffraction (Stubbs, 
1989; Millane, 1989). [n fiber diffraction, intensity 
measurements are sums of the intensities of a number 
of Fourier-Bessel structure factors (K1ug, Crick & 
Wyckoff, 1958), the number varying over the diffrac- 
tion pattern and depending on the diameter and sym- 
metry of the diffracting particle. The largest likely R 
factor therefore depends on the molecular diameter 
and symmetry, and the maximum resolution on the 
diffraction pattern. It is convenient to consider its 
calculation in two parts: calculation of largest likely 
R factors for fixed numbers of Fourier-Bessel terms, 
followed by the use of these to calculate the largest 
likely R factor for a particular diffraction pattern. 
Largest likely R factors for fixed numbers of terms 
have been determined by Stubbs (1989) and Millane 
(1989), but the second part has been defined only 
approximately (Stubbs, 1989). The relationship 
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between the R factor for a fiber diffraction pattern 
and R factors for fixed numbers of overlapping terms 
is derived here. This allows accurate calculation of 
largest likely R factors for general fiber diffraction 
patterns. 

An expression for the largest likely R factor in fiber 
diffraction is developed in the next section. In the 
following section, the theory is illustrated by applica- 
tions to particular structures and the results discussed. 

2. Theory 

The R factor is given by 

R =  E I F , - F  7 F ° = ( F - F ° ) / ( F  °) (1) 
i = l  i 1 

where Fi and F ° are the calculated and observed 
structure amplitudes respectively, ()  represents 
ensemble averaging in reciprocal space and there are 
N measurements. In traditional crystallography, F~ 
and F ° are the individual structure amplitudes. In 
fiber diffraction, however, because the diffracting par- 
ticles or crystallites are randomly rotated, the diffrac- 
tion pattern is cylindrically averaged. The measured 
amplitudes are therefore equal to the square roots of 
the sums of a number of intensities. For a non-crystal- 
line specimen, the measurements are samples (along 
layer lines) of the cylindrically averaged continuous 
transform of the diffracting particle. The number m 
of independent terms averaged depends on the 
diameter and symmetry of the diffracting particle, 
and the position in reciprocal space. It is convenient 
to denote the measured amplitude by the length ~d of 
an m-dimensional vector f~ whose components are 
the real and imaginary parts of the complex Fourier- 
Bessel structure factors G, (Stubbs, 1989; Millane, 
1989). For a polycrystalline specimen, each measure- 
ment is a set of composite crystalline intensities, the 
number depending on the space group, the cell con- 
stants, the mean crystallite size and disorientation 
(since these affect the overlap of adjacent reflections), 
and the position in reciprocal space, and ~ is used 
to represent the amplitude of a composite reflection. 

In fiber diffraction, therefore, F in (1) is replaced 
by ~q. Defining A~J= I~d- ~3°l, noting that (~do)= (<g), 
and grouping together amplitudes that have the same 
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Table 1. Values of Rm, S m and RmS m used in equation (8) to calculate largest likely R factors 

Rm S,. RmS,. 

m Exac t  A p p r o x i m a t e  Exac t  A p p r o x i m a t e  A p p r o x i m a t e  

1 2x/2 - 2  0.828 l/x/zr 0.564 0.467 
2 2 -x /2  0.586 x/~r/2 0"886 0-519 
3 7x/2/4 - 2 0.475 2/x/~r 1.128 0.536 
4 2 - 9~/2/8 0.409 3x/~r/4 1.329 0.544 
5 107x/2/64 - 2 0.364 8/(3,/~r) 1.505 0- 548 
6 2-151~/2/12,8 0.332 15x/~r/16 1"662 0"551 
7 835x/2/512 - 2  0-306 16/(5x/Tr) 1"805 0"553 
8 2 - 124h/2/1024 0"286 35x/~'/32 1 "939 0"555 
9 2629 lx/2/16384- 2 0"269 128/(35x/~r) 2"063 0"556 

10 2 - 40427x/2/32768 0"255 315x/~r/256 2-181 0-557 
11 0"243 2"293 0.557 
12 0"233 2-399 0-558 
13 0"223 2"501 0"558 
14 0.215 2"599 0"559 
15 0"208 2"693 0-559 
16 0"201 2.785 0-560 
17 0" 195 2"873 0"560 
18 0"189 2"959 0"560 
19 0-184 3"042 0"560 
20 0"180 3"123 0-561 

value of rn, one may put (1) in the form 

R =(N,,,,(AC-gJ)n,)/(Nm(~)m) (2) 
where Arm denotes the number of data with m overlap- 
ping terms, ()m represents averaging of the ~d that 
contain m terms, and ( ) represents averaging over m. 
If every amplitude contained m terms, then the R 
factor, denoted by Rm, would be given by 

Rm = (a~) , . / (~) , . .  (3) 

The cases m = 1 and 2 in (3) correspond to centric 
and acentric single crystals respectively. For a random 
structure, largest likely values for Rm have been deter- 
mined by Stubbs (1989) and Millane (1989) for any 
value of m. Since m is not constant on a fiber diffrac- 
tion pattern, the Rm cannot be used directly. However, 
R factors for general fiber diffraction patterns can be 
calculated, using the R~, as follows. Use of (2) and 
(3) shows that 

o r  

R = ( N , .R . , (  ~),.)/(N~(~),,,) (4) 

R= E N,,,R,,,(~3),,, N,.(~). ,  (5) 
m = l  1 

where M is the maximum value of m on the diffrac- 
tion pattern. Stubbs (1989) indicated that the R factor 
on a diffraction pattern can be estimated as a weighted 
(by N, , /N)  average of the R~, which gives an 
expression somewhat different from (5). 

To calculate the largest likely value of R, largest 
likely values for the R~ are substituted into (5). These 
are given by (Millane, 1989) 

R . , = 2 - 2 " + 2 m ( 2 ~ l )  B,/2(m/2+l/2, m/2) (6) 

and [by the use of equations (7) and (11) of Millane 

(1989) and the gamma function F(m)]  

( ~g)m = e l/2F( m/2 + 1/2)/1"(m/2) 

where 

(7) 

(m) 
is the binomial coefficient, Bx (m, n) is the incomplete 
beta function, and e can be estimated from the atomic 
scattering factors (Stubbs, 1989). Inspection of (5) 
and (7) shows that R is independent of e so that (5) 
can be written as 

R = • N,,RmSm N,.S,, (8) 
m = l  m = l  

where 

S~ = e- ' /2(~)~ = r (m l2+  l12)/r(m/2).  (9) 

Using (6) and (9) and simplifying, one finds 

RmSm =[2/F(m/2)]{F(m/2+ 1/2) 

- [2mF(m+ 1/2)/F(m/2) 

xBl /2(m/2+l/2 ,  m/2)}. (10) 

Values of R,,, S,~ and R,,S,~ are listed in Table 1 for 
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Fig. 1. D e p e n d e n c e  o f  R, ,  ( sol id  curve) ,  S,./4 ( d a s h e d  curve)  a n d  
R,,S,,, ( cha in  curve)  on  the  n u m b e r  o f  o v e r l a p p i n g  te rms  m. 
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Table 2. Largest likely R factors for four structures 

Maximum Min imum Max imum 
Helix radius c repeat  resolut ion resolut ion 

Molecule  symmetry  ( ~ )  (A)  (/~,) (/~) M R 

K+C-4-S 3 2 7.0 27-8 oo 4"0 4 0"519 
K+C-4-S 3 2 7.0 27"8 oo 3.0 6 0.489 
DNA 101 10"0 32.3 oo 3.0 10 0.413 
DNA 101 10.0 32.3 oo 2.5 10 0.387 
TMV 493 90.0 69.0 10.0 5.0 10 0.373 
TMV 493 90.0 69.0 10.0 3"0 16 0.307 
Pfl 275 30.0 75-6 10"0 5.0 6 0.458 
Pfl 275 30.0 75.6 10.0 3.0 10 0.381 

The K÷C-4-S data are based on a polycrystalline specimen (trigonal unit cell with a = b = 13.8 A and space group P3221), and the other structures on 
non-crystalline specimens (continuous diffraction). References for these structures are given in the text. 

m up to 20. The behavior of these quantities is illus- 
trated in Fig. 1. Note that RmS,~ is almost constant 
except for very small m. For a particular fiber diffrac- 
tion pattern, the Nm can be calculated, and the largest 
likely R factor calculated using (8) and the entries 
in Table 1. 

3. Examples and discussion 

The theory developed in the previous section is illus- 
trated by calculating the largest likely R factors for 
four different structures. These examples represent 
the variety of types of structure that have been solved 
using fiber diffraction. Two of them, the potassium 
salt of the polysaccharide chondroitin-4-sulfate (K ÷ 
C-4-S) (Millane, Mitra & Arnott, 1983) and a 
nucleic acid (Park, Arnott, Chandrasekaran, Millane 
& Campagnari, 1987), have rather small repeating 
units, and two, the helical virus TMV (Namba & 
Stubbs, 1985) and the bacteriophage Pfl (Stark, 
Glucksman & Makowski, 1988), represent some of 
the largest structures solved by fiber diffraction. Three 
of the examples are based on continuous diffraction 
and one (chondroitin-4-sulfate) on diffraction from 
a polycrystalline specimen. 

For non-crystalline structures, the number of over- 
lapping terms at a particular cylindrical radius R in 
reciprocal space is determined by assuming that com- 
plex Fourier-Bessel structure factors Gn contribute 
to the diffracted intensity only for n < 27rRa + 2 where 
n _> 2 and a is the maximum radius of the molecule 
(Stubbs, 1989). The n = 0 and n = 1 terms contribute 
where R -> 0 and R > 0, respectively. For polycrystal- 
line specimens, the number of terms for each measure- 
ment is determined by the number of independent 
structure factors in the measured composite reflec- 
tion. Reflections close to the meridian for which the 
molecular transform is very small (as determined by 
the above conditions on n) are excluded from the 
calculation. Meridional reflections are excluded since 
these are difficult to measure accurately and are not 
used in structure refinement. 

The largest likely R factors for two maximum resol- 
utions for each structure are listed in Table 2. These 

structures have a wide variety of diameters and sym- 
metries and the largest likely R factors vary between 
0.3 and 0.5 for typical values of the maximum resol- 
ution of the diffraction data. These represent typical 
largest likely R factors to be expected in fiber diffrac- 
tion analyses, and show that values need to be calcu- 
lated in individual cases. Inspection of Table 2 shows 
that R is strongly correlated with the maximum num- 
ber of overlapping terms M on the diffraction pattern. 
Estimates using a weighted average for the Rm 
(Stubbs, 1989) give good approximations to largest 
likely R factors, although they are overestimated by 
0.03 to 0.04 in these examples. 

The theory developed here can be used to examine 
the dependence of R on parameters of a structure 
determination. The largest likely R factor was calcu- 
lated for a hypothetical non-crystalline specimen with 
a = 10 and c repeat c = 20 A as a function of diffrac- 
tion data resolution Pmax ( f o r  a structure with 10~ 
helix symmetry), and helix symmetry u~ (with a 
diffraction data resolution of 4/~). The minimum 
resolution of the diffraction data was taken to be 
infinite. The results of these calculations are shown 
in Fig. 2. The largest likely R factor decreases with 
increasing resolution as the maximum number of 
overlapping terms increases. The R factor increases 
with increasing symmetry (increasing u) since this 
reduces the number of Fourier-Bessel terms at a 
particular position in reciprocal space. There are two 
features of the curve in Fig. 2(b) that are worthy of 
attention. For small u, R does not vary smoothly with 
u but appears to lie on two distinct curves, one for 
u even and one for u odd; and for large u, R is 
constant. The reasons for this behavior are as follows. 

The number of values of n that satisfy the helix 
selection rule (Klug, Crick & Wyckoff, 1958) on layer 
lines l = pu and l = pu + u/2, where p is an integer, 
is approximately half what it is on the other layer 
lines. Since there are no layer lines l = pu + u/2 when 
u is odd, the number of terms overall is larger, giving 
a smaller R factor when u is odd rather than even, 
as is evident in Fig. 2(b). This effect is more pro- 
nounced for smaller u as there are then more layer 
lines satisfying the above conditions. The effect is 
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restricted to values of u < Uo such that /max = Uo/2, 
where /max is the largest layer-line number on the 
pattern, which gives 

U0 = 2Cpmax (11)  

and R depends smoothly on u for u >  Uo. In the 
above example Uo = 10. 

As the helix symmetry increases, the number of 
Bessel terms decreases until only one contributes on 
each layer line, so that m = 1 on the equator and 
m = 2 on the other layer lines. R therefore reaches a 
constant value, 

R = R (°°), u > u (°°) (12) 

where u (°°) can be estimated by determining when 
only one term contributes on the equator, which gives 

u (°°) = 2"n'Pmaxa + 2, (13)  

R2 < R(°°)< R~ and R (°°) depends on the number of 
layer lines. This situation corresponds to diffraction 
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Fig. 2. Variation of the largest likely R factor R (for a structure 
with radius 10 A and c repeat 20 A) (a) with maximum resol- 
ution of the diffraction data Pm~x (for l0 t helical symmetry) and 
(b) with helix symmetry ut (for a maximum resolution of 4/~). 
In (b), the dashed and dotted curves are through points with u 
even and odd respectively. 

patterns dominated by single Bessel terms, which 
is unusual in high-resolution analyses of 
macromolecules, however. In the above example 
u (°°)= 18 and R(°°)=0.627. The proportion of the 
measurements contributed by the equator is approxi- 
mately equal to 4/(Ti'CPmax- 4) SO that 

R(°°)---R2=0.586, c-->oo or pmax->eo. (14) 

The fiber diffraction case for high helix symmetry and 
a small proportion of centrosymmetric reflections 
therefore approaches the single-crystal case. The 
above analysis is strictly valid only for integral helices, 
although the dependence of R on helix symmetry is 
qualitatively similar for non-integral helices. 

4. Concluding remarks 

The largest likely R factor for a general fiber diffrac- 
tion pattern has been derived in terms of largest likely 
R factors for a single number of overlapping terms 
described previously. This allows accurate largest 
likely R factors for particular diffraction patterns to 
be calculated straightforwardly using the values listed 
in Table 1. Calculations for representative structures 
show that the largest likely R factor varies sig- 
nificantly with molecular diameter and symmetry and 
diffraction data resolution, and is typically between 
0.3 and 0.5. These results also allow the effects of 
structural and diffraction parameters on R factors to 
be studied, and may be useful for further develop- 
ments in fiber diffraction theory. 

I am grateful to the US National Science Founda- 
tion for support (DMB-8606942) and Deb Zerth for 
word processing. 
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